

Biomass burning emission and impacts on air quality in Northeastern China

Hongmei Zhao^{1,2}, Guangyi Yang¹, Daniel Q. Tong^{2,3}, Xuelei Zhang¹, Aijun Xiu¹

¹Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin 130102, China ²Center for Spatial Information Science and Systems, George Mason University, Fairfax, VA 22030, USA

³Department of Atmospheric, Oceanic and Earth Sciences, George Mason University, Fairfax, VA 22030, USA

Biomass Burning in China

Biomass burning types: Forest fire; Grassland fire; Agricultural straw burning; wood combustion as fuel.

2013 MODIS Active Fire Detections from the Aqua and Terra satellites

Source: NASA Fire Information for Resource Management System (FIRMS) https://earthdata.nasa.gov/firms

Wood and crop residues burning are the major sources in China (90%): domestic burning (43%) ; open field burning (30%);

(Zhou et al., 2017 ACP)

- **♦** Spatial distribution: from northeast to east of China
- **• Temporal distribution:** primary peak in autumn
- ◆ Aerosol characteristics: high concentrations of PM_{2.5}, OC, EC

Haze distribution (Zhang et al., 2012)

China fire by month(Zhong et al., 2017)

Air Pollution in Northeastern China

Time	City	AQI	Air Quality	PM _{2.5}
Autumn (2015.11)	Harbin	178	Moderately polluted	147
	Changchun	154	Moderately polluted	125
	Shenyang	167	Moderately polluted	145
Winter (2015.1)	Harbin	155	Moderately polluted	120
	Changchun	139	Mild pollution	104
	Shenyang	145	Mild pollution	109

Northeast China has often been reported to suffer from heavy air pollution during post-harvest seasons (early October to late November).

Siomass Burning in Northeastern China

Straw yield: 160Tg/year, account for 20% in China

Utilization: less than 60%, (open field burning: 20-30%)

$$E = FRE \times \beta \times F$$

$$FRE = \int_{t1}^{t2} FRPdt$$

$$FRE -- \text{ fire radiative energy (MJ)}$$

$$FRP -- \text{ fire radiative power (MW)}$$

$$\beta -- \text{ biomass combustion rate}$$

$$(kg/MJ)$$

$$EF -- \text{ emission factor (g/kg)}$$

PM25 2015-11-01 10:00:00

- > Multi-source satellite data: MODIS, VIIRS, Himawari-8
- Localization parameters: time series, species composition, emission factors

- Measured: prescribed open field burning,
 - laboratory simulated burning
- Reference: published papers; technical guide for the air pollutant emission inventories

Emission Characteristics

Temporal Distribution of Burning Emissions

Spatial Distribution of Burning Emissions

Effects of Autumn Burning on Air Quality

CMAQ simulation

without fire

with fire

The contribution of biomass burning on $PM_{2.5}$ concentration is 52.7% in autumn

Effects of Spring Burning on Air Quality

CMAQ simulation

without fire

with fire

> The contribution of biomass burning on $PM_{2.5}$ concentration is 24.6% in spring.

> Spring burning has less effects on air quality, due to lower PBL and cold season.

Seasonal Variability of Biomass Burning Emissions

- > The burning season changed from autumn to spring.
- From 2013 to 2019, the emission of PM_{2.5} from spring burning increased year by year.

Impact of Burning Ban on Fire Emissions

About 48% PM_{2.5} concentration decreased following the implementation of government controls.

➢ Government
 management can
 effectively reduce
 the PM_{2.5}
 concentrations
 and control heavy
 haze pollution
 events.

- Higher levels of aerosol and pollutant gases emissions were concentrated in the Songnen Plain and Sanjiang Plain, the main grain producing areas in this region.
- There were two emission peaks observed: after harvesting (October to November) and before planting (March to April).
- Modeling results showed that open biomass burning contributed to 52.7% of PM_{2.5} concentrations during a regional haze episode over Northeastern China.
- The burning ban enforced in 2018 have caused the PM_{2.5} concentrations decreased by 48.1% during the post-harvest season over this region.

Thanks for your attention!

zhaohongmei@iga.ac.cn